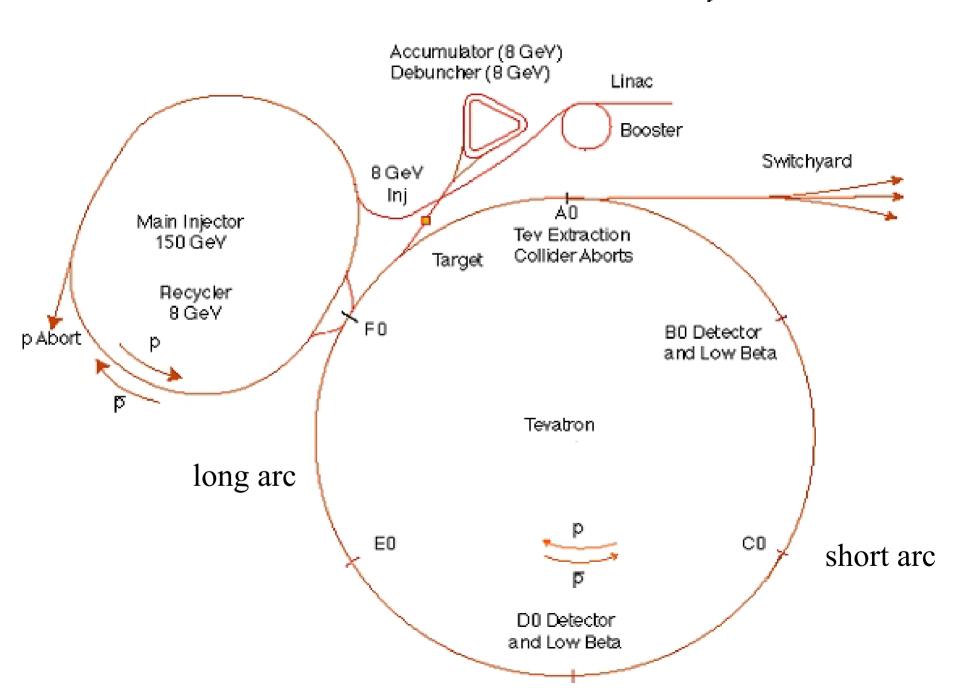
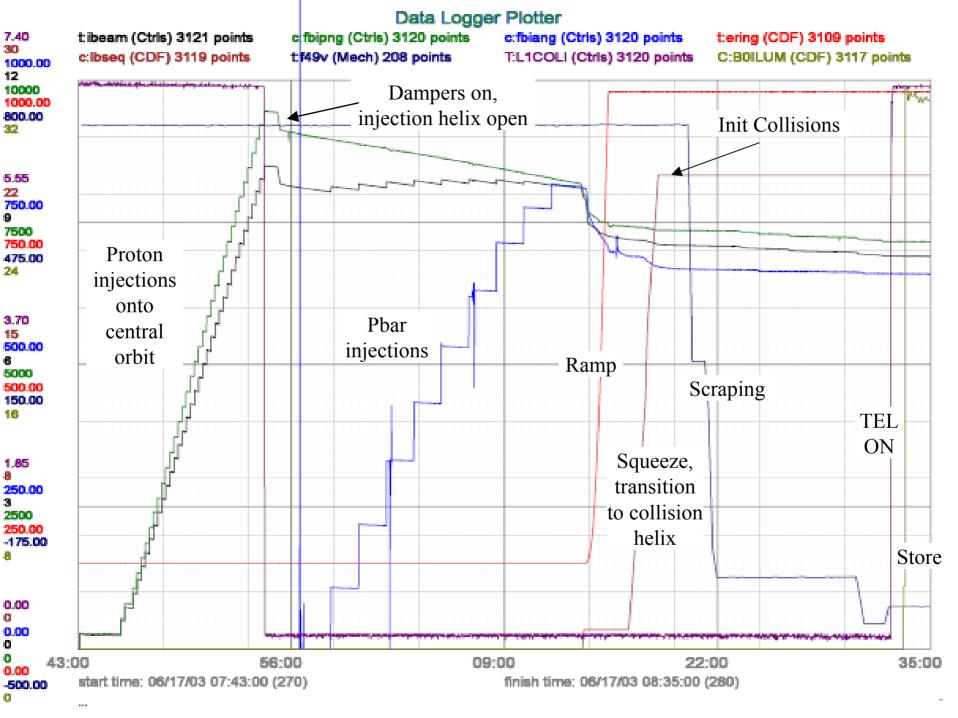


Helix/Separator Project Overview


Ron Moore - FNAL



Helix / Separator Project

- Reduce damaging beam-beam effects throughout all phases of Tevatron operation (injection, ramp, squeeze, colliding beams) by increasing beam-beam <u>separation</u>
- Modify helical orbits, i.e. how we use our separators, to maximize separation up to physical, dynamic aperture limitations
- Install additional (existing design) separators to provide more kick
- Design, build longer separators around IPs
- Obtain higher gradient by coating separators
- Construct additional polarity switches for supplies

FermilabTevatron Accelerator With Main Injector

Table of Separator Locations

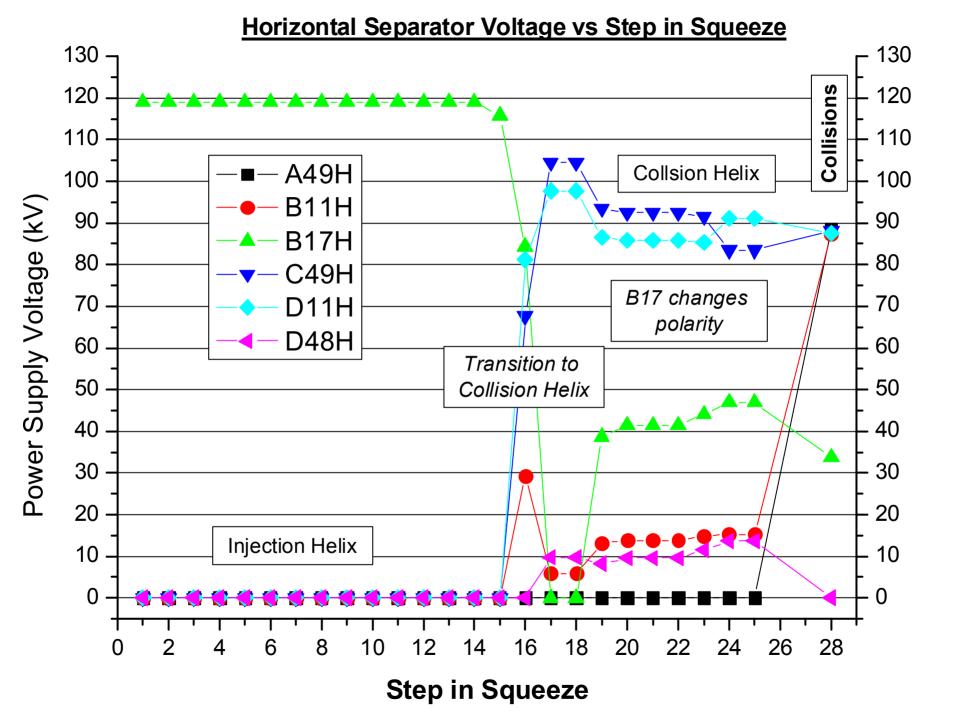
Horizontal	# modules	Polarity Switch?	Vertical	# modules	Polarity Switch?
			A17	1	No
A49	1	No	A49	2	No
B11	2	Yes	B11	1	Yes
B17	4	Yes			
			C17	4	Yes
C49	1	No	C49	2	Yes
D11	2	No	D11	1	No
D48	1	No			

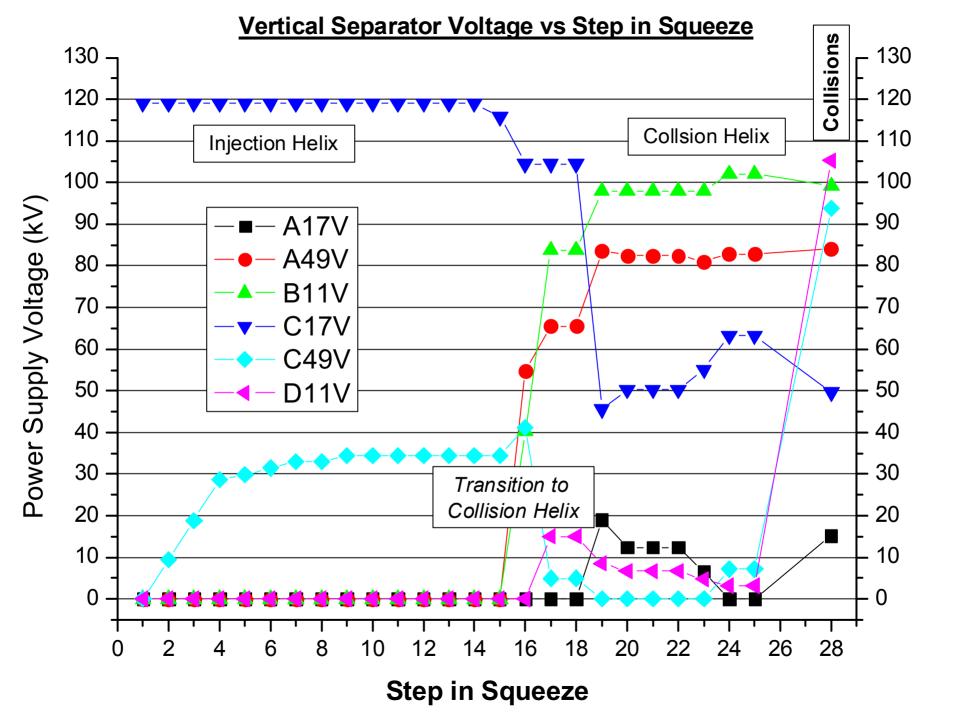
Total: 22 separator modules + 8 spares (4 not yet conditioned)
5 polarity switches + 1 spare (torn apart)

Injection, Collision Helix Generalities

Injection Helix

- Horizontal orientation set by pbar position at injection lambertson
- Beam separation limited by physical, dynamic aperture @ 150 GeV
- Beam separation decreases above 500 GeV when separator voltage reaches maximum


Collision Helix


- Horizontal orientation set by pbars being to <u>inside</u> at D0; opposite from injection helix
- No physical aperture limitations

• Transition from Injection → Collision Helix

- Occurs during the squeeze
- Beam separation decreases uncomfortably as B17H separator changes polarity

Separator Voltage vs Energy Up Ramp 130 -■— A49H (K< -B11H — В17H Power Supply Voltage - C49H D11H **D48H A17V** — A49V — B11V — C17V • C49V -+- D11V Energy (GeV)

Brief Description of Separator Modules

- 1-4 individual modules in series make up a "separator"
- 257 cm long stainless steel electrodes
 - 297 cm total "slot length" (space needed in tunnel)
- 5 cm gap between electrodes
- Bipolar operation
- Conditioned at 150 kV, typically run 115-120 kV max
- Can bake at 150-200°C in situ
- Attached 220 L/s ion pump, pair of Ti sublimation pumps

Def'n of Beam-Beam Separation

- Yuri and John have used slightly different definitions of size, beam separation
- Radial separation = distance between beams in units of beam sigmas

Yuri

$$\sigma_{x,y} = \sqrt{\beta_{x,y} \varepsilon_{rms}}$$

$$\sigma_s = \sqrt{\frac{d_x^2}{\sigma_x^2} + \frac{d_y^2}{\sigma_y^2}}$$

$$\varepsilon_{rms} = 15 \pi \, mm \cdot mrad$$

John

$$\sigma(E) = \sqrt{\frac{\beta \varepsilon_{95}}{6\gamma} + \left(\frac{\eta \delta_{95}(E)}{2}\right)^2}$$

$$\sigma_s = 2 \cdot \sqrt{\frac{d_x^2}{\sigma_x^2} + \frac{d_y^2}{\sigma_y^2}}$$

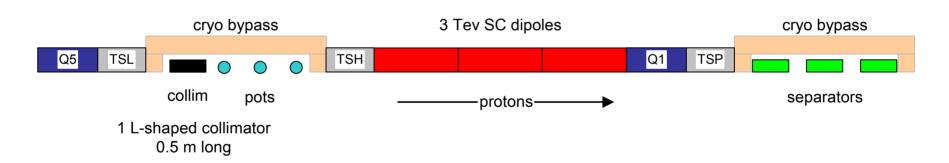
$$\varepsilon_{95} = 20\pi \ mm \cdot mrad$$

• For future uniformity, I'll try to convince one to use the other's convention

Helix/Separator Strategy

- What we can do / are doing now
 - Increase beam-beam separation > 500 GeV
 - Increase separator voltages, exploit unused separators
 - Yuri will discuss this topic
- What we can do with additional (spare) separators
 - Have 4 spares now, want to build 4 more
 - Install spares (where practical) to provide more kick
 - John Johnstone will discuss
- What we can do with NEW separators
 - Longer separators at IPs
 - Higher gradient separators with electrode coating?
 - John Johnstone will discuss

New Longer Separators Around IPs


- Longer separators would be ≈20% longer than current
- To make space for longer seps
 - Remove unused Q1 quads around B0
 - Remove Roman Pots (diffractive physics) around D0
 (Q1's around D0 already removed to install Pots)
- Makes no sense to install longer seps around only 1 IP
- Would construct 14 separators...3 on each side of the 2 IPs
 + 2 spares
- Need a strong case to proceed before asking D0 to give up part of their physics program

A48/A49 Configuration

After the Sep/Oct 03 shutdown, this A48/A49 will look like this...

Planned Configuration

Polarity Switches

- Only 5 separator supplies have switches...want more
 - For more flexibility with possible helix solutions
 - To allow <u>protons</u> to be put on <u>pbar helix</u> entire way through squeeze (for tuning up)
- Switches made in TD
 - Project to build (?) more deferred for lack of \$\$
 - Should get the \$\$, start building them (\sim 14 k\$ each)
- A design flaw recently discovered...should be remedied before constructing new switches

Other Items to Pursue

- Reduce beam-beam effect by running 18×18
 - Looks good from simulations
 - Impact of additional interactions/crossing on detectors?
- Implement crossing angle at IPs
 - Never(?) intentionally tried
 - Effect of going off-center through low- β quads?
- Reduce β * from 35 cm to 25 cm?
 - Need the Q1 magnets...could only be done at B0 at present
 - If longer seps installed at B0, can't do it at all

Collimators

Proton	Orientation	Used for HEP	Pbar	Orientation	Used for HEP
D49 (target)	7	*	F49 (target)	7	*
E0-3	7	*	F48		*
F17-2	7	*	D17-2	7	*
D17-1 (target)	L		F17-3 (target)	L	
D17-3	L		F17-1	L	
E0-1	L		E0-2	L	
A11	Ĺ	*			
A48	Ĺ	To be installed			

- 2-stage collimation system; 5 mm thick targets, 1.5 m long (most) L-shaped stainless steel secondaries
- Steel orientation as viewed in proton direction: \exists = inside, up \exists = inside, down \exists = outside, down
- If collision helix orientation changed, could rotate/flip collimator steel without much difficulty